DISTANCE LEARNING PACKET

4TH GRADE

MATH
Math
Day 1 Week 3

Day 1 Week 3- Problems made using IXL and Study Island
For each problem you will use notebook paper to solve. Please label your notebook paper
clearly for each problem.

1. Sally was adding two fraction 2/8 plus 3/8. She determines the answer is 5/8. Did Sally add
correctly? Write several sentences to support your answer.

2. Mindy is adding 4/12 plus 8/12. Her friend tells her the answer is one. Is her friend correct?
Write a few sentences to support your answer.

3. Jade and Mary baked a cheesecake. Jade ate \(\frac{3}{4} \) of the cheesecake while Mary ate \(\frac{1}{4} \) of the
same cheesecake.

Write an equation that can be used to find how much cheesecake Jade and Mary ate in all?

4. Solve the following problems
\[
\begin{align*}
2/4 + 2/4 &= \\
1/6 + 2/6 &= \\
5/8 - 3/8 &= \\
5/12 - 1/12 &= \\
5/10 - 1/10 &= \\
1/4 + 1/4 &=
\end{align*}
\]

5. Select ALL the correct answers.
Which problems could be answered by solving the equation below?
\[
\frac{7}{8} - \frac{5}{8} = n
\]

- Olivia's class ate \(\frac{7}{8} \) of a bowl of fruit salad and \(\frac{5}{8} \) of a cake at the class party. How much
fruit salad was left?

- Jay ran \(\frac{7}{8} \) of a kilometer. Matt ran \(\frac{5}{8} \) of a kilometer. How much farther did Jay run than
Matt?

- Bree took \(\frac{7}{8} \) of a box of crayons. Julie took \(\frac{5}{8} \) of a same-sized box of crayons. What
fraction of the crayons did they take?

- Adrian had \(\frac{7}{8} \) of a deck of cards. Jon had \(\frac{5}{8} \) of a same-sized deck of cards. How much
more of a deck of cards did Adrian have?

- Brian ate \(\frac{7}{8} \) of a pizza. Lance ate \(\frac{5}{8} \) of a same-sized pizza. What fraction of pizza did
they eat?
Decompose Fractions

Question 1.

\[\frac{5}{8} = 1 + \frac{2}{8} + \frac{4}{8} \]

Which model represents the sum given above?

A. Y
B. X
C. W
D. Z

Question 2.

\[\frac{7}{4} = ? \]

A. \(\frac{1}{7} + \frac{1}{7} \)
B. \(\frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} \)
C. \(\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \)
D. \(\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \)
Question 3.

Which expression below is equal to \(1\frac{3}{4}\)?

A. \(\frac{3}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}\)

B. \(\frac{4}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}\)

C. \(\frac{4}{3} + \frac{4}{3} - \frac{1}{2} + \frac{1}{2}\)

D. \(\frac{3}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3}\)

Question 4.

Directions: Drag the tiles to the boxes to form correct pairs. Not all tiles will be used.

Drag tiles to match expressions that have the same sum.

\[
\begin{align*}
\frac{3}{8} + \frac{2}{8} + \frac{1}{8} & \quad \frac{2}{8} + \frac{1}{8} \\
\frac{4}{8} + \frac{4}{8} + \frac{1}{8} & \quad \frac{5}{8} + \frac{3}{8} + \frac{1}{8} \\
1 + \frac{3}{8} + \frac{1}{8} & \quad \frac{3}{8} + \frac{3}{8} \\
\end{align*}
\]

\[\longrightarrow\]

\[\longrightarrow\]

\[\longrightarrow\]
Question 5.

\[\frac{8}{12} \]

Which of the following expressions are equivalent to the above fraction?

U. \[\frac{5}{12} + \frac{7}{12} \]
V. \[\frac{3}{12} + \frac{4}{12} + \frac{1}{12} \]
W. \[\frac{6}{12} + \frac{3}{12} + \frac{1}{12} \]
X. \[\frac{6}{12} + \frac{2}{12} \]
Y. \[\frac{2}{12} + \frac{4}{12} + \frac{2}{12} \]
Z. \[\frac{3}{12} + \frac{4}{12} + \frac{5}{12} \]

A. V, Z, and W
B. Y and X
C. Y, V, and X
D. V and W

Question 6.

Which expression is equal to \(\frac{5}{12} \)?

A. \[\frac{2}{4} + \frac{1}{4} + \frac{2}{4} \]
B. \[\frac{3}{4} + \frac{2}{8} \]
C. \[\frac{1}{12} + \frac{3}{12} + \frac{1}{12} \]
D. \[\frac{3}{6} + \frac{2}{6} \]

Question 7.

Which expression below is equal to \(\frac{5}{6} \)?

A. \[\frac{3}{3} + \frac{2}{6} \]
B. \[\frac{3}{6} + \frac{1}{6} + \frac{1}{6} \]
C. \[\frac{3}{4} + \frac{1}{2} + \frac{1}{2} \]
D. \[\frac{2}{4} + \frac{3}{4} \]
Question 8.

Which expression below is equivalent to $\frac{9}{10}$?

A. $\frac{4}{10} + \frac{3}{10} + \frac{1}{10}$

B. $\frac{4}{6} + \frac{5}{4}$

C. $\frac{2}{5} + \frac{6}{5}$

D. $\frac{3}{10} + \frac{3}{10} + \frac{3}{10}$

Question 9.

$\frac{3}{6} = ?$

A. $\frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6}$

B. $\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3}$

C. $\frac{1}{3} + \frac{1}{3} + \frac{1}{3}$

D. $\frac{1}{8} + \frac{1}{8} + \frac{1}{8}$

Question 10.

$\frac{4}{12} = ?$

A. $\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}$

B. $\frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12}$

C. $\frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12}$

D. $\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}$
Real World - Add and Subtract Fractions

Math
Day 3 Week 3

Question 1.

Drew had $\frac{2}{6}$ of the total number of points he needs to beat the level on his video game. He just scored another $\frac{2}{6}$ of the total number. What fraction of the total number of points does he have now?

\[
\begin{array}{c}
\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
\hline
\frac{2}{6} \\
\frac{2}{6}
\end{array}
\]

= ?

A. $\frac{4}{6}$
B. $\frac{0}{6}$ (none of the points)
C. $\frac{4}{12}$
D. $\frac{2}{6}$

Question 2.

Emily had a box of chocolates. Only $\frac{8}{10}$ of the box was filled with chocolates. Then she gave away the chocolates that filled $\frac{2}{10}$ of the box. What fraction of the box is filled with chocolates now?

\[
\begin{array}{c}
\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
\hline
\frac{8}{10} \\
\frac{2}{10}
\end{array}
\]

= ?

A. $\frac{6}{5}$
B. $\frac{6}{10}$
C. $\frac{10}{10}$ (The whole box is filled with chocolates.)
D. $\frac{6}{0}$
Question 3.

David works as a gardener at Queens Gardens. He waters $\frac{7}{12}$ of the garden before lunch. After lunch he waters $\frac{3}{12}$ of the garden. What fraction of the garden does David water?

A. $\frac{10}{12}$
B. $\frac{4}{24}$
C. $\frac{4}{12}$
D. $\frac{10}{24}$

Question 4.

A strawberry dessert calls for $\frac{4}{5}$ of a tablespoon of whipped cream. If $\frac{3}{5}$ of a tablespoon is added, how much more whipped cream needs to be added?

A. $\frac{4}{5}$ of a tablespoon
B. $\frac{2}{5}$ of a tablespoon
C. $\frac{3}{5}$ of a tablespoon
D. $\frac{1}{5}$ of a tablespoon

Question 5.

Sherri noticed that $\frac{6}{10}$ of her closet was filled with clothes. She emptied the clothes out of $\frac{5}{10}$ of the closet. What fraction of her closet is filled with clothes now?

A. $\frac{11}{10}$
B. $\frac{1}{10}$
C. $\frac{1}{20}$
D. $\frac{1}{10}$
Question 6.

Directions: Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).

Lauri and Joan bought a box of 8 cookies. Lauri ate 2 cookies after lunch, and Joan ate 3 cookies after dinner. What fraction of the whole box of cookies were eaten by Lauri and Joan?

Complete the equation to represent the situation.

\[\frac{2}{8} + \frac{3}{8} = \frac{\text{?}}{8} \]

Question 7.

Mark ate \(\frac{4}{8} \) of a pizza and Ron ate \(\frac{3}{8} \) of the same pizza. What fraction of the pizza did Mark and Ron eat in all?

A. \(\frac{1}{8} \)
B. \(\frac{3}{8} \)
C. \(\frac{2}{8} \)
D. \(\frac{7}{8} \)

Question 8.

A movie theater sells \(\frac{45}{100} \) of its tickets on the first day and \(\frac{35}{100} \) of its tickets on the second day. Altogether, what fraction of the tickets did the movie theater sell?

A. \(\frac{10}{100} \)
B. \(\frac{90}{100} \)
C. \(\frac{75}{100} \)
D. \(\frac{80}{100} \)

Question 9.

John baked a pear tart for his friends, Matt and Ron. Matt ate \(\frac{2}{10} \) of the tart, and Ron ate \(\frac{3}{10} \) of the tart, as shown by the equation below.

\[\frac{2}{10} + \frac{3}{10} = \text{?} \]

How much of the tart did the two boys eat?

A. \(\frac{5}{10} \)
B. \(\frac{1}{10} \)
C. \(\frac{5}{10} \)
D. \(\frac{6}{10} \)
Question 10.

Jonah and Clara bought $\frac{4}{5}$ of a pound of blueberries. Jonah took $\frac{3}{5}$ of the pound home with him. What fraction of a pound of blueberries were left for Clara?

A. $\frac{1}{6}$ of a pound
B. $\frac{2}{6}$ of a pound
C. $\frac{1}{3}$ of a pound
D. $\frac{3}{6}$ of a pound
Multiply Fraction by Whole Number

Question 1.
Which expression correctly represents the fraction $\frac{13}{10}$?

A. $\frac{13}{10} \times \frac{1}{10}$

B. $13 + \frac{1}{10}$

C. $10 + \frac{3}{10}$

D. $13 \times \frac{1}{10}$

Question 2.
Nick wrote the following equation.

$$\frac{6}{6} = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6}$$

He made a claim about $\frac{6}{6}$ and wrote a multiplication equation to support the claim.

$$\frac{6}{6} = 6 \times \frac{1}{6}$$

Which claim does Nick's multiplication equation support?

A. The number $\frac{6}{6}$ is a multiple of $\frac{1}{6}$

B. The number 6 is a multiple of $\frac{1}{6}$

C. The number $\frac{1}{6}$ is a multiple of 6.

D. The number $\frac{1}{6}$ is a multiple of $\frac{6}{6}$
Question 3.

Solve the following.

\[9 \times \frac{1}{4} \]

A. \(\frac{10}{36} \)

B. \(\frac{10}{4} \)

C. \(\frac{3}{36} \)

D. \(\frac{2}{4} \)

Question 4.

Directions: Use the drawing tool(s) to form the correct answers on the answer space. Look at the expression below.

\[3 \times \frac{1}{6} \]

Part A: Starting at 0, draw a line segment on the number line whose length represents this expression.

Part B: Put a point in the circle next to the product of this expression.
Question 5.

Directions: Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).

Rick filled 8 containers with $\frac{2}{5}$ liter of water each. He wants to know how much total water he used. When counting by 1s, between which two numbers does the total number of liters of water lie? Enter the lesser number in the first box and the greater number in the second box.

Rick used between $\underline{\hspace{2cm}}$ and $\underline{\hspace{2cm}}$ liters of water.

Question 6.

Directions: Use the drawing tool(s) to form the correct answer on the provided number line. Starting at 0, draw a line on the number line whose length represents this expression.

$5 \times \frac{3}{8}$

![Number line drawing](image)

Question 7.

Which expression is equivalent to the expression below?

$4 \times \frac{2}{3}$

A. $2 \times \frac{1}{3}$

B. $8 \times \frac{1}{3}$

C. $10 \times \frac{1}{3}$

D. $6 \times \frac{1}{3}$
Question 8.

Which equation does the tape diagram represent?

A. $4 \times \frac{1}{3} = \frac{3}{4}$
B. $3 \times \frac{1}{4} = \frac{3}{4}$
C. $3 \times \frac{3}{4} = \frac{9}{4}$
D. $4 \times \frac{3}{4} = \frac{12}{4}$
Math
Day 5 Week 3

Fractions - Denominators of 10 or 100

Question 1.

\[\frac{6}{10} + \frac{37}{100} \]

A. \(\frac{97}{110} \)
B. \(\frac{97}{100} \)
C. \(\frac{43}{100} \)
D. \(\frac{43}{110} \)

Question 2.

Directions: Type the correct answer in each box. Use numerals instead of words.

Which numbers correctly replace the letters to show pairs of equivalent fractions?

\[\frac{3}{10} = \frac{a}{100} \] \(a = \) \\
\[\frac{6}{10} = \frac{b}{100} \] \(b = \) \\
\[\frac{9}{10} = \frac{c}{100} \] \(c = \)

Question 3.

\[\frac{5}{10} + \frac{24}{100} \]

A. \(\frac{29}{100} \)
B. \(\frac{29}{110} \)
C. \(\frac{74}{100} \)
D. \(\frac{74}{110} \)

Question 4.

Which of the following is equivalent to \(\frac{2}{10} \)?

A. \(\frac{2}{100} \)
B. \(\frac{22}{100} \)
C. \(\frac{4}{100} \)
D. \(\frac{20}{100} \)
Question 5.

Which of the following is equivalent to $\frac{9}{10}$?

A. $\frac{81}{100}$
B. $\frac{80}{100}$
C. $\frac{89}{100}$
D. $\frac{9}{100}$

Question 6.

$\frac{5}{10} + \frac{9}{100}$

A. $\frac{14}{110}$
B. $\frac{59}{110}$
C. $\frac{59}{100}$
D. $\frac{14}{100}$

Question 7.

Which of the following is equivalent to $\frac{3}{10}$?

A. $\frac{3}{100}$
B. $\frac{9}{100}$
C. $\frac{30}{100}$
D. $\frac{33}{100}$
Question 8.

\[
\frac{7}{10} + \frac{6}{100}
\]

A. \(\frac{76}{110}\)

B. \(\frac{76}{100}\)

C. \(\frac{13}{110}\)

D. \(\frac{13}{100}\)

Question 9.

Add the fractions given below.

\[
\frac{10}{10} + \frac{52}{100}
\]

A. \(\frac{62}{110}\)

B. \(\frac{62}{100}\)

C. \(\frac{10}{100}\)

D. \(\frac{52}{100}\)

Question 10.

Add the fractions given below.

\[
\frac{10}{10} + \frac{57}{100}
\]

A. \(\frac{67}{110}\)

B. \(\frac{67}{100}\)

C. \(\frac{10}{100}\)

D. \(\frac{57}{100}\)
Decimal Fractions

Question 1.
Write the following decimal as a fraction.

A. \(\frac{4}{10} \)
B. \(\frac{14}{10} \)
C. \(\frac{4}{100} \)
D. \(\frac{14}{100} \)

Question 2.
Write the following fraction as a decimal.

\(\frac{7}{100} \)

A. 0.07
B. 700
C. 7
D. 0.7

Question 3.
Write the following decimal as a fraction.

0.51

A. \(\frac{510}{100} \)
B. \(\frac{51}{100} \)
C. \(\frac{51}{10} \)
D. \(\frac{5.1}{100} \)
Question 4.

What value does the red dot represent on the number line?
A. 9.0
B. 0.09
C. 0.99
D. 0.9

Question 5.

Write the following fraction as a decimal. \(\frac{97}{100} \)
A. 97
B. 0.097
C. 0.97
D. 9.7

Question 6.

Write the following fraction as a decimal. \(\frac{28}{100} \)
A. 0.28
B. 2.8
C. 28
D. 0.028
Question 7.

What value does the red dot represent on the number line?
A. 0.1
B. 1.0
C. 0.01
D. 0.11

Question 8.

Directions: Use the drawing tool(s) to form the correct answer on the provided number line.
Place a point on the number line to show the location of 0.73.

Question 9.

Which number is located at point P?
A. 0.66
B. 0.74
C. 0.61
D. 0.76
Question 10.

Write the following fraction as a decimal.

\[
\frac{7}{10}
\]

A. 0.7
B. 0.07
C. 10.7
D. 7.10
Compare Decimals

Question 1.

Fill in the blank.

95,302.79 ___ 95,302.78

A. =
B. <
C. >

Question 2.

Which symbol correctly compares these numbers?

6.70 ___ 6.7

A. =
B. >
C. <

Question 3.

Directions: Drag each decimal number to the correct location on the comparisons. Not all decimal numbers will be used.

Which decimal number makes each statement true?

7.53 7.46 7.50 7.35 7.42 7.64
Question 4.

The models below are wholes of the same size. Compare the decimals represented by the models.

A. <
B. =
C. >

Question 5.

The models below are wholes of the same size. Compare the decimals represented by the models.

A. =
B. <
C. >

Question 6.

Select the correct symbol.

5.6 ? 5.3
A. <
B. =
C. >
Question 7.
Which symbol correctly compares these numbers?

\[0.48 \ ? \ 0.38 \]

A. =
B. <
C. >

Question 8.
Select the correct symbol.

\[58.81 \ ? \ 58.82 \]

A. =
B. <
C. >

Question 9.
The models below are wholes of the same size. Compare the decimals represented by the models.

A. <
B. =
C. >

Question 10.
Which symbol correctly compares these numbers?

\[0.37 \ ? \ 0.7 \]

A. =
B. <
C. >
Units of Measurement

Question 1.

Directions: Type the correct answer in each box. Spell all words correctly, and use numerals instead of words for numbers.

Leslie and Joanne are in the same class. Their school day is 6 hours long. Joanne said that she was in school for 360 minutes. Leslie said she was in school for 320 minutes. Complete the table below to see who is correct.

<table>
<thead>
<tr>
<th>hour(s)</th>
<th>minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Based on the table, ______ is correct because there are ______ minutes in 6 hours.

Question 2.

Which of the following is equivalent to 6 gallons?

A. 9 quarts
B. 12 quarts
C. 48 quarts
D. 24 quarts

Question 3.

Which value correctly completes the table below?

<table>
<thead>
<tr>
<th>pounds</th>
<th>ounces</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
</tr>
</tbody>
</table>

A. 16
B. 8
C. 6
D. 12
Question 4.

How many meters are in 2 kilometers?
A. 2,000
B. 200
C. 100
D. 20

Question 5.

Which value correctly completes the table below?

<table>
<thead>
<tr>
<th>liters</th>
<th>milliliters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,000</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>3,000</td>
</tr>
<tr>
<td>4</td>
<td>4,000</td>
</tr>
</tbody>
</table>

A. 200
B. 2,000
C. 20,000
D. 20

Question 6.

Pamela finished her homework in 2 hours. What is the amount of time, in minutes, it takes Pamela to finish her homework?
A. 60 minutes
B. 140 minutes
C. 180 minutes
D. 120 minutes

Question 7.

Convert 2 l to ml.
A. 2,000 ml
B. 200 ml
C. 20 ml
D. 20,000 ml
Question 8.
Convert 34 km to m.
A. 340,000 m
B. 34,000 m
C. 3,400 m
D. 340 m

Question 9.
Convert 9 kg to g.
A. 0.009 g
B. 0.09 g
C. 9,000 g
D. 90 g

Question 10.
Scotty made a sandwich in 3 minutes.
What would happen to the number of units if he measured the time in seconds?
A. There would be no units.
B. There would be fewer units.
C. There would be more units.
D. There would be the same number of units.
Real World Measurement

Question 1.

Kayla walked 3 feet on the balance beam before she fell. Mackenzie walked 4 times as far before she fell. How far did Mackenzie walk on the balance beam before she fell?

A. 12 feet
B. 7 feet
C. 15 feet
D. 9 feet

Question 2.

Barney mixed \(\frac{10}{6} \) liters of lemonade with \(\frac{1}{6} \) liters of water. How much liquid did he have in all?

A. \(\frac{11}{6} \) liters
B. \(\frac{11}{12} \) liters
C. \(\frac{9}{6} \) liters
D. \(\frac{9}{6} \) liters

Question 3.

Directions: Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar.

Aki has 4 yards of fabric. She uses 10 feet of fabric to make curtains.

How much fabric is left over? \(\, \) feet
Question 4.

Carl's new kitten was sick, so he had to give her \(\frac{3}{4}\) milliliters of medicine every day for 7 days. How much medicine did he give her in all?

A. \(\frac{31}{4}\) milliliters

B. \(\frac{21}{4}\) milliliters

C. \(\frac{21}{28}\) milliliters

D. \(\frac{10}{4}\) milliliters

Question 5.

Roxanna is selling 1,491 ounces of silver coins. If each coin weighs 7 ounces, how many silver coins is she selling?

A. 212

B. 223

C. 213

D. 1,484

Question 6.

Colin threw a ball 4.15 meters. Jake threw a ball 6.21 meters. How much farther did Jake throw the ball than Colin?

A. 2.06 meters

B. 3.06 meters

C. 1.56 meters

D. 9.36 meters

Question 7.

A container has 16 liters of cooking oil. A restaurant buys 8 such containers of cooking oil.

How much cooking oil does the restaurant buy in all?

A. 144 liters

B. 128 liters

C. 136 liters

D. 24 liters
Question 8.

Elena used 37.3 milliliters of acid in her science experiment. Jeff used 57.8 milliliters of acid in his experiment. How many more milliliters did Jeff use than Elena?

A. 20.5 milliliters
B. 21.6 milliliters
C. 20.6 milliliters
D. 21.5 milliliters

Question 9.

Tina is running in a race that is 5,520 meters long. There are 6 equal-length sections of the race course with a water station at the end of each section. How far apart are the water stations?

A. 919 meters
B. 921 meters
C. 917 meters
D. 920 meters

Question 10.

Jason grew $3\frac{4}{8}$ inches taller two years ago. Last year, he grew $2\frac{5}{8}$ inches taller. How much did he grow during the last two years?

A. $5\frac{1}{8}$ inches
B. $6\frac{1}{8}$ inches
C. $5\frac{7}{8}$ inches
D. $7\frac{1}{8}$ inches
Time

Question 1.

Nico and Aisha run for exercise.

- Nico runs for $\frac{1}{4}$ of an hour.
- Aisha runs for $\frac{3}{4}$ of an hour.

How much longer does Aisha run than Nico?

A. 1 hour

B. $\frac{3}{4}$ of an hour

C. $\frac{2}{4}$ of an hour

D. $\frac{1}{2}$ of an hour

Math

Day 5 Week 4

Question 2.

Amy makes bracelets out of beads. It takes Amy 12 minutes to complete each bracelet. How long will it take her to make 4 bracelets?

A. 35 minutes

B. 16 minutes

C. 24 minutes

D. 48 minutes
Question 3.

Directions: Type the correct answer in each box. Use numerals instead of words.

Ava spent 45 minutes shopping and then went to lunch. She spent two times as long at lunch as she spent shopping. She started shopping at the time shown on the clock.

At what time did she finish lunch? ____________ : ____________

Question 4.

Use this number line to help answer the question.

A band started practicing at 11:15 a.m.

- First, they played jazz music for $\frac{1}{2}$ hour.
- Then, they played classical music for $\frac{3}{2}$ hour.

What time did they stop playing classical music?

A. 12:45 p.m.
B. 11:35 p.m.
C. 12:05 p.m.
D. 12:25 p.m.
Question 5.

What is the time difference between 7:28 a.m. and 10:37 p.m. on the same day?
A. 15 hours and 9 minutes
B. 3 hours and 9 minutes
C. 3 hours and 5 minutes
D. 16 hours and 5 minutes

Question 6.

Nick spent $\frac{3}{4}$ of an hour each day for 9 days reading a book.

What is the total number of hours Nick spent reading the book during these 9 days?
A. 6 $\frac{3}{4}$ hours
B. 6 $\frac{1}{4}$ hours
C. 7 $\frac{3}{4}$ hours
D. 7 $\frac{1}{4}$ hours

Question 7.

Alan takes 11 minutes to jog 1 kilometer. How many seconds does Alan take to jog 1 kilometer?
A. 330
B. 1,100
C. 660
D. 550

Question 8.

Justin started a race at 2:45 p.m., and finished it at 8:30 p.m. How long did it take Justin to run the race?
A. 6 hours and 45 minutes
B. 7 hours and 45 minutes
C. 5 hours and 55 minutes
D. 5 hours and 45 minutes
Question 9.

What is the time difference between 3:35 p.m. and 9:30 p.m. on the same day?

A. 5 hours and 55 minutes
B. 5 hours and 5 minutes
C. 3 hours and 55 minutes
D. 6 hours and 5 minutes

Question 10.

What time is it 3 hours and 29 minutes after 2:10 p.m.?

A. 4:26 p.m.
B. 5:39 p.m.
C. 5:26 p.m.
D. 6:39 p.m.