Isotope Notes

What is an Isotope?

• Atoms with the same number of __________________ and __________________ but __________________ numbers of __________________
• Many elements have two or more isotopes
 – Stable isotopes
 – Unstable isotopes
• Can distinguish one form another by looking at the ________ number:
 – Each __________________ represents the ________ number
 • Oxygen has 3 isotopes: Oxygen-16, Oxygen-17, and Oxygen-18
 • Carbon has 3 isotopes: Carbon-12, Carbon-13, and Carbon-14

Stable Isotopes

• An element whose nucleus does ______ spontaneously give off particles or ________________
• Of the known chemical elements, _____ elements have at least one stable nuclei.
 – These comprise the first 82 elements from hydrogen to lead, with the two exceptions, technetium (element 43) and promethium (element 61), that do not have any stable nuclei.
• Tin has ten stable isotopes

Unstable Isotope

• An element whose ______________ decomposes, or ____________, by ______________ particles and ________________.
 • __________________________
 • The energy or particles that are emitted from the nucleus is called __________________________
 • 3 Types of radiation: Alpha, Beta, Gamma
 • Used to determine the __________ of __________________________

Example of Isotopes

• Carbon has three isotopes and they are carbon 12, carbon 13 and carbon 14.
 – Carbon 12 & 13 are stable isotopes
 – Carbon 14 is an unstable isotope

Isotope Notation...How to write isotopes

• 1st Way of Writing Isotopes-_________________________ ____________-_______________ number
 – Examples
 • Oxygen-16, Oxygen-17, and Oxygen-18
 • Carbon-12, Carbon-13, and Carbon-14
• 2nd Way of Writing Isotopes -

M = Atomic Mass
(Neutrons + Protons)
A = Atomic Number
(Protons)
E = Element

Label the Mass Number and the Atomic Number in each example below.

\[\begin{align*}
\text{__________} & \ 78 \text{ Kr} \\
\text{__________} & \ 36 \text{ Kr} \\
\text{__________} & \ 59 \text{ Ni} \\
\text{__________} & \ 28 \text{ Ni} \\
\text{__________} & \ 4 \text{ He} \\
\text{__________} & \ 2 \text{ He} \\
\text{__________} & \ 63 \text{ Cu} \\
\text{__________} & \ 29 \text{ Cu} \\
\end{align*} \]

Calculating Isotopes

• You will use the \underline{\text{__________}} number and the \underline{\text{__________}} number of the isotope to determine the number of \underline{\text{__________}} in the nucleus.
 • Neutrons = Mass number - Atomic number

• Example:
 • Oxygen has 3 isotopes:
 • Oxygen-16
 • Oxygen-17
 • Oxygen-18
 Each of these numbers represents the mass number
 • Oxygen’s atomic number = 8
 • How many neutrons does each isotope of oxygen have?
 • Oxygen-16 \underline{\text{__________}}
 • Oxygen-17 \underline{\text{__________}}
 • Oxygen-18 \underline{\text{__________}}

• Example:
 • How many neutrons does each isotope below have?

\[\begin{align*}
\text{__________} & \ 78 \text{ Kr} \\
\text{__________} & \ 36 \text{ Kr} \\
\text{__________} & \ 59 \text{ Ni} \\
\text{__________} & \ 28 \text{ Ni} \\
\text{__________} & \ 4 \text{ He} \\
\text{__________} & \ 2 \text{ He} \\
\text{__________} & \ 63 \text{ Cu} \\
\text{__________} & \ 29 \text{ Cu} \\
\end{align*} \]