Notation:
t_1 = first term in the sequence
t_n = the n^{th} term
t_{n-1} = the term BEFORE the n^{th} term
d = common difference (could be negative)
r = common ratio (could be fraction)

Recursive Formula – must know previous term
*two formulas: arithmetic and geometric

For an Arithmetic Sequence:
\[t_1 = 1^{st} \text{ term} \]
\[t_n = t_{n-1} + d \]

For a Geometric Sequence:
\[t_1 = 1^{st} \text{ term} \]
\[t_n = r(t_{n-1}) \]

*Note: When writing the formula, the only thing you fill in is the 1^{st} term and either d or r.

Explicit Formula – based on the term number.
*You are able to find the n^{th} term without knowing the previous term.

For an Arithmetic Sequence:
\[t_n = t_1 + d(n - 1) \]

For a Geometric Sequence:
\[t_n = t_1(r^{n-1}) \]

*Note: When writing the formula, the only thing you fill in is the t_1 and either the d or r.
Write an explicit and recursive formula for the following sequences (examples from worksheet).

1. -4, -6, -8, -10, …

Explicit:

Recursive:

2. 19, 13, 7, 1, …

Explicit:

Recursive:

3. 25, 75, 225, …

Explicit:

Recursive:

4. 3, 9, 27, 81, …

Explicit:

Recursive: